Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Case Rep ; 11(1): e6844, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2208923

ABSTRACT

This report described a rare case of subcutaneous anaerobic bacterial abscess due to Peptoniphilus olsenii and Gleimia europaea after COVID-19. The patient received incision and drainage of the abscess and antibiotics, thereby achieving recovery. Immunodeficiency related to COVID-19 and its treatment might contribute to secondary skin and subcutaneous bacterial infections.

2.
Inflamm Regen ; 42(1): 53, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2139785

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS: To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS: Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS: Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.

3.
Intern Med ; 61(18): 2797-2801, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2029870

ABSTRACT

A 53-year-old woman with severe coronavirus disease 2019 (COVID-19) pneumonia was admitted and treated with intravenous unfractionated heparin for thromboprophylaxis under general anesthesia with mechanical ventilation. She developed right hemiparesis after hospitalization due to a large hemorrhagic infarction. Her platelet count decreased from 243,000/µL at administration to 121,000/µL. Anti-platelet factor 4-heparin antibody testing was positive according to a latex immunoturbidimetric assay. She was therefore diagnosed with heparin-induced thrombocytopenia. We immediately stopped the heparin and started argatroban; the platelet count recovered, and thrombosis did not relapse. Physicians should consider heparin-induced thrombocytopenia as a cause of ischemic stroke in patients with COVID-19 infection.


Subject(s)
COVID-19 , Ischemic Stroke , Thrombocytopenia , Venous Thromboembolism , Anticoagulants/adverse effects , COVID-19/complications , Female , Heparin/adverse effects , Humans , Ischemic Stroke/etiology , Middle Aged , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Venous Thromboembolism/drug therapy
4.
Int J Infect Dis ; 116: 255-257, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1757401

ABSTRACT

Messenger RNA (mRNA) vaccines that protect against COVID-19 are widely used in many countries owing to their high efficacy and safety profiles. Recently, few severe adverse events, such as anaphylaxis and myocarditis, were reported in healthy individuals. The safety of mRNA COVID-19 vaccines has not been adequately studied in patients with interstitial lung disease. We report 2 cases of acute exacerbation of preexisting interstitial pneumonia associated with mRNA COVID-19 vaccination. In both cases, lung disease was stable before the vaccination. Initial responses to steroid therapy were unfavorable, and intravenous cyclophosphamide was administered in both cases. Both patients were diagnosed with vaccine-related exacerbation of interstitial pneumonia based on laboratory results, radiologic features, and the observed clinical course, which lacked other causative events. We suggest that clinicians should note the possibility of acute exacerbation of pneumonia after mRNA COVID-19 vaccination and carefully monitor patients with interstitial lung disease.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination/adverse effects
5.
J Med Virol ; 94(3): 1067-1073, 2022 03.
Article in English | MEDLINE | ID: covidwho-1487499

ABSTRACT

Systemic corticosteroid therapy is frequently used to treat coronavirus disease 2019 (COVID-19). However, its maximum duration without secondary infections remains unclear. We aimed to evaluate the utility of monitoring cytomegalovirus (CMV) infection in patients with COVID-19 and estimate the maximum duration of systemic corticosteroid therapy without secondary infections. We included 59 patients with severe COVID-19 without CMV infection on admission to the intensive care unit (ICU). All patients received systemic corticosteroid therapy under invasive mechanical ventilation, with examination for plasma CMV-deoxyribonucleic acid (DNA) levels during the ICU stay. We analyzed the correlations among patient characteristics, CMV infection, diseases, and patient mortality. CMV infections were newly identified in 15 (25.4%) patients; moreover, anti-CMV treatment was administered to six (10.2%) patients during the ICU stay. Four (6.8%) patients had secondary infection-related mortality. The cumulative incidences of CMV infection and anti-CMV treatment during the ICU stay were 26.8% (95% confidence interval [CI], 15.8%-39.0%) and 12.3% (95% CI, 4.8%-23.4%), respectively. Furthermore, the median duration of systemic corticosteroid therapy without CMV infection was 15 days (95% CI, 13-16 days). The presence of CMV infection was associated with mortality during the ICU stay (p = 0.003). Monitoring plasma CMV-DNA levels could facilitate the detection of secondary CMV infection due to prolonged systemic corticosteroid therapy. The duration of systemic corticosteroid therapy for COVID-19 should be limited.


Subject(s)
COVID-19 Drug Treatment , Coinfection , Cytomegalovirus Infections , Adrenal Cortex Hormones/therapeutic use , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/epidemiology , Humans , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL